Complete mitochondrial genome sequence of historical olive (Olea europaea subsp. europaea) cultivar Mehras in Jordan

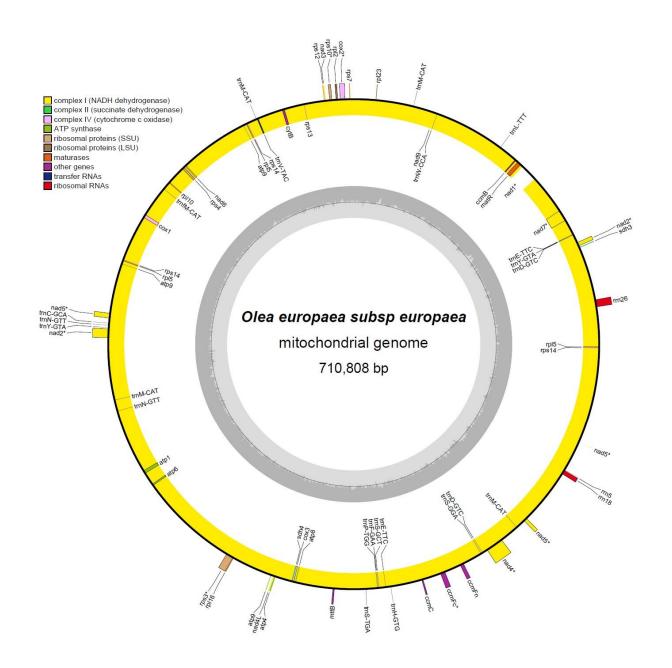
Prof. Mohammad Brake
Biology Department
Jerash University

Prof. Monther Sadder

Department of Horticulture
and Crop Science

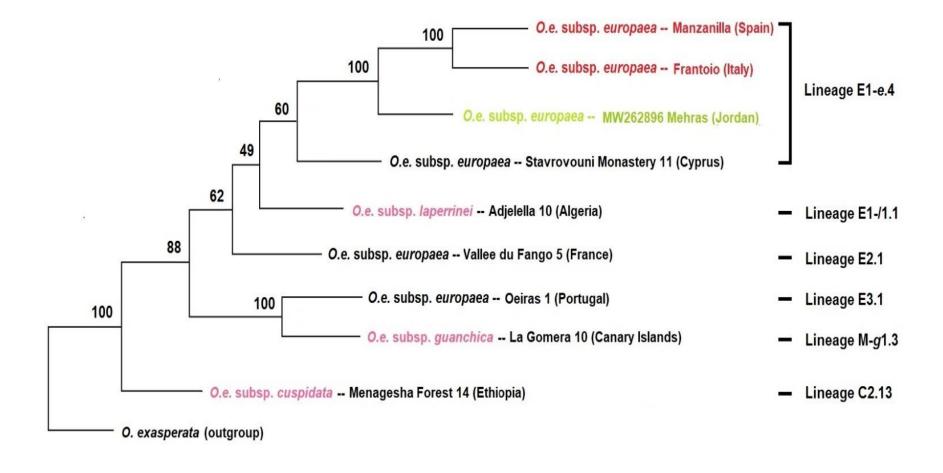
Jordan University

Background:


- Jordan is considered along others countries in the Fertile Crescent region core of origin for olive domestication and cultivation.
- Olives are major economic trees grown for both healthy oil and fruits in Jordan.
- 70% of tree cultivated areas are olive orchids
- 20 Million tress grown in 250000 Acres.

Mehras

- Illumina HiSeq sequencing technology to sequence the mitochondrial genome.
- CLC Genomics Workbench (USA) to assemble the mitochondrial genome of Mehras.
- The complete mitochondrial genome sequence deposited into GenBank database (Accession Number: MW262896).
- The mitochondrial genome was illustrated using OGDRAW (Greiner et al., 2019).
- Selected regions of mitogenome sequences were aligned using the multiple sequence alignment (CLC Genomics Workbench, USA).
- PHYLIP software were used to construct phylogenetic tree.


- The complement mitochondrial genome of Mehras was 710,808 bp length of circular form.
- The mitochondrial genome contained 70 genes (44 protein-coding, 23 tRNA, and 3 rRNA).
- GC content was 44.7%.
- Some mitogenome gene in Mehras are missing start codons.

• The entire mitogenome of O.e. subsp. europaea cultivar Mehras (Jordan) and related cultivar Stavrovouni Monastery 11 (Cyprus) were aligned.

Region	Gene	Gene product	SNPs	InDels (bases)							
	name		•	1	2	3	4	5	6	7	8
Intergenic			564	23	10	5	7	5	5	3	1
Intragenic	rrn26	26S ribosomal RNA	189	2	1		1				
	rrn18	18S ribosomal RNΛ	120	1							
	trnW-CCA	tRNA-Trp	1								
	rpl23	ribosomal protein L23	2								
	trnV-TAC	tRNA-Val	4	1							
	trnM-CAT	tRNA-Met	1								
	trnN-GTT	tRNA-Asn	3								
	atp1	ATPase subunit 1	15								
	atp4	ATPase subunit 4	1								
	trnS-TGA	tRNA-Ser	13			2					
	trnF-GAA	tRNA-Phe	5	1							
	trnH-GTG	tRNA-His	3								
	trnS-GGA	tRNA-Ser	3								
	trnD-GTC	tRNA-Asp	1								
Total		-	925								68

 The constructed phylogenetic trees shows that O. e. subsp. europaea cultivar Mehras has a common ancestor with cultivars Frantoio from Italy and Manzanilla from Spain

Published Data:

MITOCHONDRIAL DNA PART B 2021, VOL. 6, NO. 1, 194–195 https://doi.org/10.1080/23802359.2020.1860712

MITOGENOME ANNOUNCEMENT

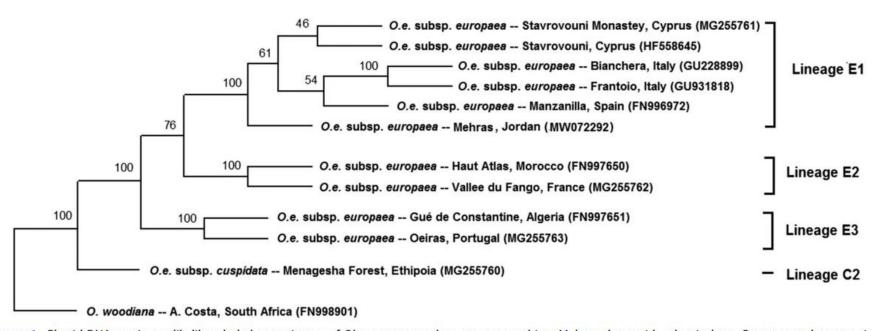
3 OPEN ACCESS

Complete chloroplast genome sequence of historical olive (Olea europaea subsp. europaea) cultivar Mehras, in Jordan

Nizar Haddad^a , Hussein Migdadi^{a,b}, Mohammad Brake^c, Salam Ayoub^a, Wisam Obeidat^a, Yahya Abusini^a, Abeer Aburumman^a, Banan Al-Shagour^a, Eman Al-Anasweh^a and Monther Sadder^d

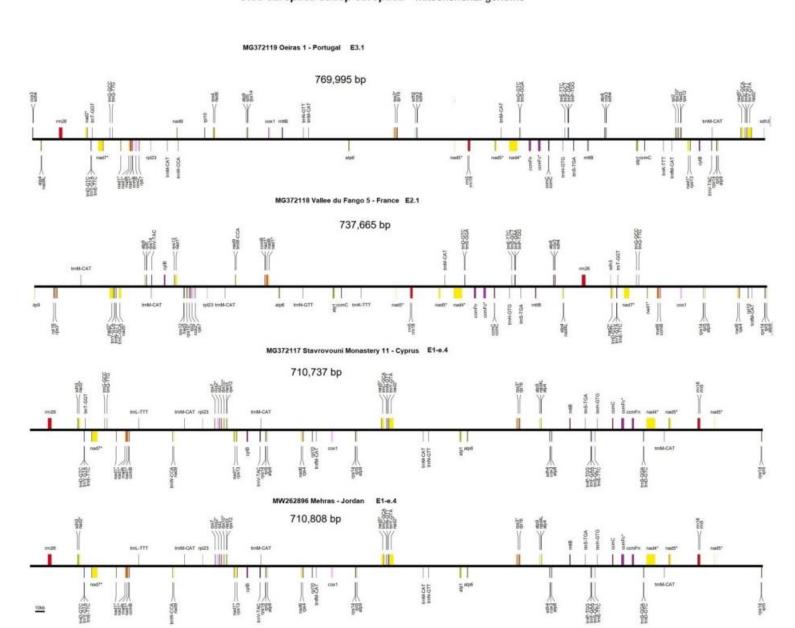
^aNational Agricultural Research Center – NARC, Amman, Jordan; ^bCollege of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia; ^cScience Faculty, Jerash University, Jerash, Jordan; ^dSchool of Agriculture, The University of Jordan, Amman, Jordan

ABSTRACT


The complete chloroplast genome sequence of *Olea europaea* subsp. *europaea* cultivar Mehras was determined using high-throughput sequencing technology. Chloroplast genome was 155,897 bp in length, containing a pair of 25,742 bp inverted repeat (IR) regions, which were separated by large and small single-copy regions (LSC and SSC) of 86,622 and 17,791 bp, respectively. The chloroplast genome contained 130 genes (85 protein-coding, 37 tRNA, and eight rRNA). GC content was 37.8%. We performed phylogenetic analysis with other isolates. The analysis showed that *O. e.* subsp. *europaea* cultivar Mehras has an ancient common ancestor with cultivated olives in Italy, Spain, and Cyprus.

ARTICLE HISTORY

Received 17 October 2020 Accepted 27 November 2020


KEYWORDS

Mehras; olive; plastome

Figure 1. Plastid DNA maximum-likelihood phylogenetic tree of *Olea europaea* subsp. *europaea* cultivar Mehras along with other isolates. Bootstrap values are given on each branch (1000 replicates). *O. e.* subsp. *cuspidata* and *O. woodiana* were used as out-groups. Olive plastid lineages were based on Besnard et al. (2011).

- The gene order and reading direction was compared using aligned linear forms of four mitochondrial genomes.
- The alignment shows almost a complete synteny between in order and gene reading directions between Stavrovouni Monastery 11 and Mehras.
- The alignment shows apparent differences among two cultivars; Oeiras 1 and Vallee du Fango 5.

In the near future:

1. Analysis of nuclear genome.

Purposes:

- Using detecting SNPs and genetic variations in the whole genome be used in marker assisted selection programs.
- Studying phylogeny and evolution of Mehras cultivar.
- Identifying genes correlated with desirable traits specially for abiotic stress tolerance.
- 2. Studying the performance of cultivar Mehras under abiotic stress conditions like drought, salinity, and heat.

Innovation:

- 1. The last years the price of olive oil of Mehras was augmented by 50%.
- 2. More investigation at the molecular level like full genome sequences analysis could leads to discovery of novel genes unique to Mehras cultivar which in turn will:
- increase the farmer's income.
- Increase areas cultivated by cultivar Mehras.

